Mn(III) Acetate Mediated Diasteroselective [3+2] Oxidative Addition Of 1,3-Dicarbonyl Compounds With Chalcones

Pachiappan. Shanmugam, Kalvi. Hemanth Kumar and Paramasivan. T. Perumal.*

A diastereoselective synthesis of 4,5-dihydrofurans by oxidative addition of 1,3-dicarbonyl compounds with chalcones mediated by $Mn(OAc)_3$ in moderate to good yields is reported.

J. Heterocyclic Chem., 44, 827 (2007).

INTRODUCTION

The introduction of radical chemistry to synthetic organic chemistry for the construction of complex carbocyclic as well as heterocyclic compounds has created a new methodology [1]. The versatility of this technology has encouraged great interest in the development of novel reagents and procedures for the generation of radicals [2]. Ceric ammonium nitrate (CAN) and manganese(III) acetate have been extensively used as single electron transfer agents for the construction of C-C bonds [1-4]. Furthermore, the utility of CAN in carbon-heteroatom bond forming reactions (C-N, C-S, C-Se, C-Br, C-I) was demonstrated [5].

Oxidative addition of 1,3-dicarbonyl compounds with alkenes, dienes, and exocyclic alkenes provides a straightforward synthesis of dihydrofuran and spirodihydrofuran derivatives [6,7]. The dihydrofuran ring is a ubiquitous motif, which is found in numerous natural products (*e.g.* polyether antibiotics, nucleosides, lignans) [8]. The CAN or Mn(III) mediated synthesis of tetrasubstituted dihydrofurans by the addition of acetonyl acetone/dimedone with cinnamyl esters have been reported [8,9].

In continuation of our work on chalcones [10], we expected that 1,3-dicarbonyl compounds would add to chalcones stereo- and regio-selectively through a [3+2] oxidative addition protocol. Chalcones are easily prepared by stirring a mixture of an aldehyde and acetophenone in methanol under ice-cold conditions for 2 h at basic pH. The oxidative addition of 1,3-dicarbonyl compounds with chalcones mediated by Mn(III) was still to be explored.

In the present work, various chalcones were subjected to oxidative addition with 1,3-dicarbonyl compounds mediated by $Mn(OAc)_3$ or CAN. In a representative example, CAN mediated oxidative addition of 1,3dicarbonyl compounds with chalcone at a low temperature (-5 to 0°C) did not afford the expected products. TLC showed more than five closely moving spots, which were difficult to separate. Recently Zhang *et al.* demonstrated a CAN-NaHCO₃ mediated synthesis of dihydrofurans in moderate yields [11]. However, CAN in acetonitrile was very sluggish for the reaction of (i) sulfones and chalcones (ii) 1,3-dicarbonyls and *o*-hydroxy chalcones. Hence, we considered Mn(III) acetate in acetic acid for the oxidative addition reactions [12].

RESULTS AND DISCUSSION

A typical experimental procedure involved stirring the mixture of chalcone and 1,3-dicarbonyl compound at 80 °C under an inert atmosphere. After the usual work-up and column chromatography, the reaction gave reasonable yields of the oxidative addition products (Scheme 1). The temperature was varied from room temperature to 100 °C. The reaction was very slow at room temperature and, at higher temperatures, it led to a mixture of undesired products, which were difficult to isolate.

Finally, the addition of three equivalents of NaOAc to the reaction at 80 °C resulted in the formation of only one diastereomer. Two and one half equivalents of $Mn(OAc)_3$ and 3 equivalents of NaOAc in acetic acid and stirring the reaction mixture at 80 °C under an argon atmosphere provided the optimal conditions for the synthesis of dihydrofurans **3a-f** (Table 1). Scheme 1: Oxidative addition of methyl acetoacetate with chalcone mediated by Mn(OAc)₃

 Table 1

 Oxidative addition of 1,3-dicarbonylcompounds on chalcones.

	RCOCH ₂ COR'		ArCOCHCHAr'				
Entry	R	R'	Ar	Ar'	l ime (h)	Product	Yield ^{a,b}
1	Ме	OMe	Ph	4-CI-C ₆ H ₄	6	MeO O Ph Me O Ph	64
2	Ме	OEt	Ph	4-CI-C ₆ H ₄	6	Eto Ph Me Ph	68)
3	Ph	OEt	Ph	4-CI-C ₆ H ₄	23	EtO O O Ph	⁴⁶
4	Me	Me	Ph	4-CI-C ₆ H ₄	5	Me Ph Me Cl	73
5	Me	Ph	Ph	4-CI-C ₆ H ₄	14		41
6 F	0 Sh- 0	⊃ ↓ Me	Ph	4-CI-C ₆ H ₄	26	Ph.s ^O O Me Cl	44

 $^{^{}a}\mbox{Isoalted}$ yield, $^{b}\mbox{products}$ characterized by IR, NMR and GC-MS techniques.

The reaction was extended to different 1,3-dicarbonyl compounds, such as cyclic and acyclic ketones, and β -keto sulphones (Table 1). The oxidative additions mediated by Mn(III) had led to the formation of tetrasubstituted dihydrofurans with two chiral centers at C-4 and C-5. To ascertain the configuration around C-4 and C-5, the J values of the two doublets resonating at δ 5-6 ppm were calculated. They were found to be 6-7 Hz

which confirmed that the configuration around C-4 and C-5 carbon was *cis*. The typical J values for *cis* diastereomer of five membered compounds was around 5-7 Hz [13]. The *trans* isomer was not considered as its typical J values vary from 9 to 12 Hz [13a].

The targeted oxidative addition reaction, followed by the tandem cyclization of ortho-hydroxy chalcones was performed (Scheme 2). These compounds were subjected to coupling reaction with ethyl acetoacetate. But the reaction did not proceed beyond dihydrofuran formation. The appearance of a phenolic -OH group in ¹H NMR and IR spectra substantiated the non-progression of the expected tandem cyclization **3g-i** (Table 2).

Scheme 2. Oxidative addition of 1,3-dicarbonylcompounds on 2-hydroxychalcones.

 Table 2

 Oxidative coupling of 1.3-dicarbonylcompounds with

2-hydroxychalcones.											
Entry	RCOC	H ₂ COR	ArCOCHCHAr'		Timo	Broduct	Viold				
	R	R'	Ar	Ar'	(h)	FIDUUCI	rieiu				
1	CH ₃	OEt	СС	Ph-	6	Eto O HO Me O 3g	61				
2	CH ₃	CH ₃	СС	⟨_J_	24	Me O HO Me S 3h	54				
3	CH ₃	CH ₃	ССон	Ph	14	Me O HO Me O 3i	63				

 $^{^{\}mathrm{a}}$ Isolated yield, $^{\mathrm{b}}\text{products}$ characterized by IR, NMR and GC-MS techniques.

The probable mechanism of the reaction is expected to proceed *via* oxidation of 1,3-dicarbonyl compounds to

electrophilic radical followed by addition cyclization (Scheme 3) similar to previous reports.[8,9,14].

Scheme 3: A plausible mechanism for the formation of dihydrofurans.

In summary we have reported a novel and efficient diasteroselective synthesis of tetrasubstituted *cis* 4,5-dihydrofurans by employing Manganese (III) acetate.

EXPERIMENTAL

Melting points were determined in capillary tubes and are uncorrected. Analytical TLC was performed on pre-coated plastic sheets of silica gel G/UV-254 of 0.2 mm thickness (Machery-Nagel, Germany). IR spectra were taken as KBr pellets on a Perkin Elmer RXI FT-IR spectrometer. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded in CDCl₃ solutions with TMS as internal standard on a JEOL instrument. Mass spectra were recorded using JEOL DX-303 in EI ionization mode at 70eV. Elemental analysis data were recorded using Thermo Finnigan FLASH EA 1112 CHN analyzer.

General experimental procedure for the oxidative addition of 1,3-dicarbonyl compounds. A mixture of chalcone (1 mmol) and 1,3-dicarbonyl compound (1.2 mmol), $Mn(OAc)_3$ (2.5 mmol) and NaOAc (3 mmol) in acetic acid under Ar atmosphere was stirred over oil-bath at 80 °C. After stirring the reaction mixture for appropriate time (Table 1 and Table 2), it was neutralized with NaHCO₃ and extracted with CHCl₃ (3 x 30 mL). The organic layer was dried with Na₂SO₄ and the compound was separated by column chromatography using 5 % ethyl acetate and petroleum ether. The reaction afforded *cis* dihydrofurans.

Methyl *cis*-4-benzoyl-5-(4-chlorophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (3a). Viscous liquid; IR (CHCl₃): 1649, 1684, 2950 cm⁻¹; ¹H NMR: δ 2.38 (s, 3H), 3.54 (s, 3H), 5.11 (d, J = 6.9 Hz, 1H), 5.55 (d, J = 6.8 Hz, 1H), 7.18 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 9.15 Hz, 2H), 7.41 (q, J = 7.45 Hz, 1H), 7.55 (t, J = 7.45 Hz, 2H), 7.84 (d, J = 6.85 Hz, 2H); ¹³C NMR: δ 14.34, 51.06, 57.71, 86.43, 103.78, 127.19, 128.77, 128.82, 129.29, 133.6, 136.15, 138.59, 165.22, 170.17, 177.66, 200.05; MS (EI, m/z): 356 (M+); *Anal.* calcd for C₂₀H₁₇ClO₄: C, 67.32; H, 4.80. Found: C, 67.11; H, 4.62.

Ethyl *cis*-4-benzoyl-5-(4-chlorophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (3b). Viscous liquid; IR (CHCl₃): 1630, 1700, 1720 cm⁻¹; ¹H NMR: δ 0.94 (t, J = 7.5Hz, 3H), 2.38 (s, 3H), 3.95 (q, J = 7.5 Hz, 2H), 5.00 (d, J = 6.85 Hz, 1H), 5.56 (d, J = 6.8 Hz, 1H), 7.18 (d, J = 8 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.40 (t, J = 7.45 & 8.0 Hz, 3H), 7.54 (t, J = 7.45 Hz, 1H), 7.85 (d, J = 7.45 Hz, 1H); ¹³C NMR: δ 13.95, 14.29, 57.57, 59.92, 86.57, 104.12, 127.12, 127.50 128.74, 128.80, 129.27, 133.65, 134.67, 136.78, 138.69, 164.67, 200.43.MS (EI, m/z): 370 (M+); Anal. calcd for C₂₁H₁₉ClO₄ : C, 68.02; H, 5.16. Found: C, 67.85; H, 5.05.

Ethyl *cis*-4-benzoyl-5-(4-chlorophenyl)-2-phenyl-4,5-dihydrofuran-3-carboxylate (3c). Viscous liquid; IR (CHCl₃): 1630, 1700, 1720 cm⁻¹; ¹H NMR: δ 0.81 (t, J = 7.5Hz, 3H), 3.93 (m, 2H), 5.22 (d, J = 6.85Hz, 1H), 5.6 (d, J = 7.45Hz, 1H), 7.28 (d, J = 8.6Hz, 2H), 7.36 (d, J = 8.6Hz, 2H), 7.42-7.47 (m, 6H), 7.45 (t, J = 7.45Hz, 1H), 7.90 (d, J = 7.45Hz, 1H), 7.92 (d, J = 8.55Hz, 2H); ¹³C NMR: δ 14.91, 59.61, 62.34, 86.29, 106.51, 114.16, 114.25, 115.38, 127.19, 127.85, 128.82, 129.34, 129.74, 136.86, 143.51, 144.67, 155.91, 163.67, 171.41, 201.08; MS (EI, m/z): 432 (M+); *Anal.* calcd for C₂₆H₂₁ClO₄ C, 72.14; H, 4.89. Found: C, 72.36; H, 4.62.

1-[*cis*-**4-benzoyl-5-(4-chlorophenyl)-2-methyl-4,5-dihydrofuran-3-yl]ethanone (3d).** Viscous liquid; IR (CHCl₃): 1612, 1693, 1731 cm-1; ¹H NMR: δ 2.25 (s, 3H), 2.42 (s, 3H), 5.11 (d, J = 6.9 Hz, 1H), 5.47 (d, J = 6.85 Hz, 1H), 7.25 (dd, J = 5.35 & 2.3 Hz, 2H), 7.36 (d, J = 6.9 Hz, 2H), 7.39 (d, J = 7.65 Hz, 2H), 7.51 (q, J = 6.9 Hz, 1H), 7.85 (d, J = 6.8 Hz, 2H); ¹³C NMR: δ 15.50, 29.79, 58.56, 86.84, 116.51, 125.86, 128.73, 128.88, 129.03, 129.12, 130.99, 133.53, 136.71, 139.83, 168.55, 200.32; 340 (M+); *Anal.* calcd for C₂₀H₁₇ClO₃: C, 70.49; H, 5.03. Found: C, 70.09; H, 4.82.

cis-4-(3,4-Dibenzoyl)-2-methyl-5-(4-chlorophenyl)-4,5-dihydrofuran (3e). Viscous liquid; IR (CHCl₃): 1645, 2959 cm⁻¹; ¹H NMR: δ 2.26 (s, 3H), 5.12 (d, J = 6.9Hz, 1H), 5.61 (d, J = 6.9 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.60 Hz, 2H), 7.41-7.48 (m, 6H), 7.49 (t, J = 7.45Hz, 1H), 7.92 (d, J = 7.45 Hz, 1H), 7.94 (d, J = 8.4 Hz, 2H); ¹³C NMR: δ 16.12, 68.51, 86.13, 107.12, 114.23, 114.58, 115.64, 127.23, 127.83, 128.79, 129.31, 129.58, 136.92, 143.53, 144.77, 155.08, 163.27, 171.49, 200.13; MS (EI, m/z): 402 (M+); *Anal.* calcd for C₂₅H₁₉ClO₃: C, 74.53; H, 4.75. Found: C, 74.40; H, 4.70.

[*cis*-2-(4-Chlorophenyl)-5-methyl-4-(phenylsulfonyl)-2,3dihydrofuran-3-yl]-phenyl-methanone (3f). Mp. 63 °C; IR (KBr) : 1070, 1291, 1325, 1422, 1692 cm⁻¹; ¹H NMR: δ 2.45 (s, 3H), 5.27 (d, J = 6.1 Hz, 1H), 5.62 (d, J = 6.1 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.35-7.40 (m, 6H), 7.55 (m, 4H), 7.76 (d, J = 8.0 Hz, 2H); ¹³C NMR: δ 13.87, 57.04, 87.65, 110.66, 125.61, 125.86, 126.42, 128.73, 128.88, 129.03, 129.12, 130.99, 131.20, 133.53, 136.71, 139.83, 172.43, 199.38. MS (EI, m/z): 438 (M+); *Anal.* calcd for C₂₄H₁₉ClO₄S: C, 65.67; H, 4.36. Found: C, 65.54; H, 4.22.

Ethyl *cis*-4-(2-Hydroxybenzoyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (3g). Viscous liquid; IR (CHCl₃): 1630, 1700, 1721, 3400 cm⁻¹; ¹H NMR: δ 0.94 (t, J = 6.85 Hz, 3H), 2.33 (s, 3H), 3.83 (q, J = 7.45 Hz, 2H), 5.25 (d, J = 6.9Hz, 1H), 5.82 (d, J = 6.9Hz, 1H), 6.88 (t, J = 6.9Hz, 1H), 7.10-7.23 (m, 7H), 7.88 (d, J = 6.8Hz, 1H) 11.75 (s, 1H); ¹³C NMR: δ 13.03, 15.88, 54.65, 62.15, 86.13, 115.46, 118.73, 118.94, 119.22, 121.55, 123.48, 126.29, 127.18, 131.37, 132.56, 132.93, 137.08, 163.75, 199.95; MS (EI, m/z): 352 (M+); *Anal.* calcd for C₂₁H₂₀O₅: C, 71.58; H, 5.72. Found: C, 71.21; H, 5.53.

1-[*cis*-**4-**(**2-hydroxybenzoyl**)-**2-methyl-5-thien-2-yl-4,5dihydrofuran-3-yl]-ethanone (3h).** Viscous liquid; IR (CHCl₃): 1612, 1693, 1731, 3250, 3400 cm⁻¹; ¹H NMR: δ 2.29 (s, 3H), 2.38 (s, 3H), 5.24 (d, J = 6.1 Hz, 1H), 5.70 (d, J = 6.1 Hz, 1H), 6.80 (t, J = 6.9 & 8.4 Hz, 1H), 6.85 (t, J = 4.55 Hz, 1H), 6.89 (d, J = 5.35 Hz, 1H), 6.93 (d, J = 3.85 Hz, 1H), 7.04 (d, J = 3.05 Hz, 1H), 7.47 (t, J = 8.4 Hz, 1H), 7.65 (d, J = 7.65 Hz, 1H), 11.91 (s, 1H); 13 C NMR: δ 15.55, 28.92, 58.06, 82.18, 115.62, 119.14, 119.17, 119.24, 125.65, 125.89, 126.84, 127.14, 130.57, 131.15, 137.18, 141.83, 168.15, 204.54; MS (EI, m/z): 328 (M+); Anal. calcd for $\rm C_{18}~H_{16}O_4S$: C, 65.84; H, 4.91. Found: C, 65.40; H, 4.90.

1-[*cis*-**4-**(**2-Hydroxybenzoyl**)-**2-methyl-5-phenyl**-**4,5-dihydrofuran-3-yl**]-ethanone (3i). Viscous liquid; IR (CHCl₃): 1610, 1695, 1730, 3255, 3397 cm⁻¹; ¹H NMR: δ 2.28 (s, 3H), 2.30 (s, 3H), 5.14 (d, J = 6.9Hz, 1H), 5.93 (d, J = 6.9Hz, 1H), 6.9 (t, J = 6.9Hz, 1H), 7.08-7.25 (m, 7H), 7.85 (d, J = 6.8Hz, 1H), 12.06(s, 1H); ¹³C NMR: δ 15.61, 28.71, 54.73, 85.42, 114.46, 118.59, 118.87, 119.18, 121.30, 123.50, 126.82, 127.06, 131.19, 132.47, 132.95, 137.38, 163.22, 199.84. MS (EI, m/z): 322 (M⁺); Anal. calcd for C₂₀H₁₈ O₄: C, 74.52; H, 5.63. Found: 74.41; H, 5.53.

Acknowledgement. We (P.S & K.H) thank the Council of Scientific and Industrial Research, New Delhi, INDIA for financial support.

REFERENCES

[1] Nair, V.; Mathew, J.; Prabhakaran, *Chem. Soc. Rev.*, **1997**, 127.

[2] Nair, V.; Panicker, S. B.; Nair, L. G.; George, T. G.; Augustine, A. Synlett , 2003, 156.

[3] Snider, B. B. Chem. Rev., 1996, 96, 339.

[4] Melikyan, G. G. Synthesis 1993, 833.

[5] Nair, V.; Nair, L. G.; George, T. G. Augustine, A. *Tetrahedron* **2000**, *56*, 7607; (b) Nair, V. George, T. G. *Tetrahedron Lett.* **2000**, *41*, 3199; (c) Reddy, M. V. R.; Mehrotra, B.; Vankar, Y. D. *Tetrahedron Lett.* **1995**, *36*, 4861.

[6] Nair, V.; Mathew, J. J. Chem. Soc., Perkin Trans. 1, 1995, 187.

[7] (a) Nair, V.; Nair, L. G.; Balagopal, L.; Mathew, J. Indian. J.
 Chem. Sect. B 2000, 39, 352; (b) Nair, V.; Mathew, J.; Alexander, S.
 Synth. Commun. 1995, 25, 3981.

[8] Garzino, F.; Meou, A.; Brun, P. *Tetrahedron Lett.*, **2000**, *41*, 9803 and more references therein.

[9] (a) Roy, S. C.; Mandal, P. K. *Tetrahedron*, **1996**, *52*, 2193.
(b)Bar, G.; Parson, A. F.; Thomas, C. B. *Tetrahedron*, **2001**, *57*, 4719.

[10] Hemanth Kumar, K.; Muralidharan, D.; Perumal, P. T. *Synthesis*, **2004**, 63; (b) Hemanth Kumar, K.; Muralidharan, D.; Perumal, P. T. *Tetrahedron Lett.*, **2004**, *45*, 7903.

[11] Zhang, W.; Huo, C. D.; Liu, Z. G.; Liu, Z. L. Chinese Chemical Letters, 2004, 15, 389.

[12] (a) Bar, G. Synlett, 2002, 835; (b) Davies, D. T.; Kapur, N.;
Parsons, A. F. *Tetrahedron*, 2000, 56, 3941; (c) Montevecchi, P. C.;
Navacchia, M. L. *Tetrahedron*, 2000, 56, 9339; (d) Wu, Y. -L.; Chuang,
C. -P.; Lin, P. -Y. *Tetrahedron*, 2000, 56, 6209; (e) Yoshinaga, T.;
Nishino, H.; Kurosawa, K. *Tetrahedron Lett.*, 1998, 39, 9197.

[13] (a) Iqbal, J.; Kumar, T. K. P.; Manogaran, S. *Tetrahedron Lett.*, **1989**, *30*, 4701. (b) Roy, S. C.; Mandal, P. K. *Tetrahedron* **1996**, *52*, 2193. (c) Lee, Y. R.; Lee, G. J.; Kang, K. Y. *Bull. Korean Chem. Soc.* **2002**, *23*, 1477

[14] Giese, B. Angew. Chem. Int. Ed. Engl., 1983, 22, 753.